

What we are discussing today: Data and tools that can help you construct the "right ladder" on the "right wall"

Your task:

Put crews on the right streams, with the right tools and designs to:

- restore as many miles/acres of riverscape as possible
-So, they provide more of the resource values that we all care about

Part 1: Overview of riverscape concepts, data, and tools for BLM

Part 2: Application of concepts, data, and tools at the various spatial scales of planning

Riverscapes span the network across a watershed

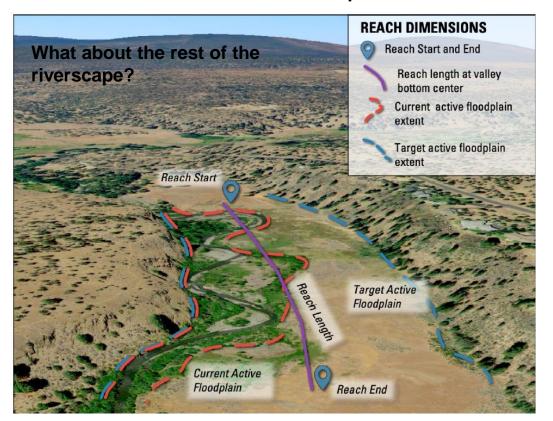
Riverscapes are the part of the landscape (*connected network*) that could plausibly flood in the contemporary natural flow regime. ... Includes riparian wetlands! Riverscape (laterally) ≈ valley bottom

"Riparian" only makes up 1% to 4% of most landscapes today... But its potential (valley bottoms) make up 5% to 15% of most landscapes.

Implications of a Riverscape Perspective on Monitoring Extent

Traditional Monitoring: Reaches of CHANNEL

OUADRAT PLOTS Stubble ht, 2. bank alteration, 3. woody browse, 4. greenline veg, 5. bank stability, 6. woody regeneration – on the greenline

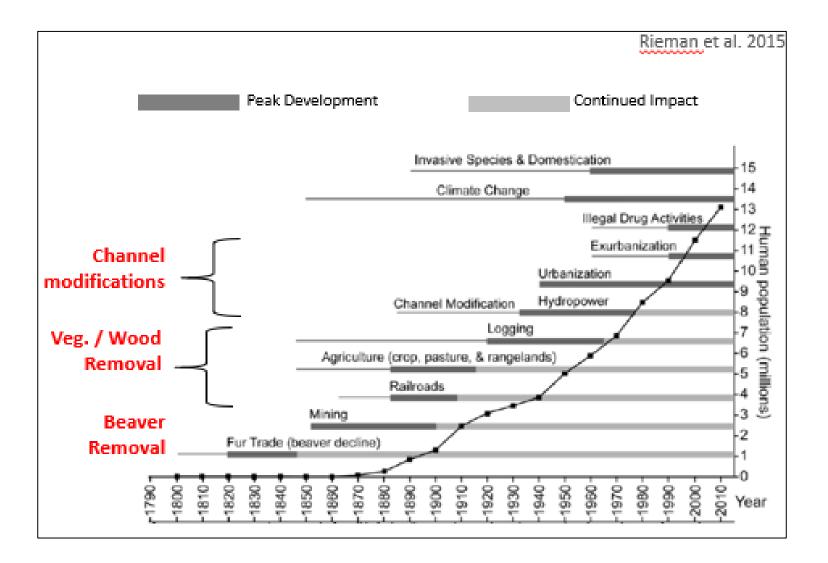

> 7. Greenline-Greenline Width & 8. Substrate, 9. Thatweg profile, 10. Pool, depth and frequency

CROSS SECTION

Spaced quadrats

Greenline

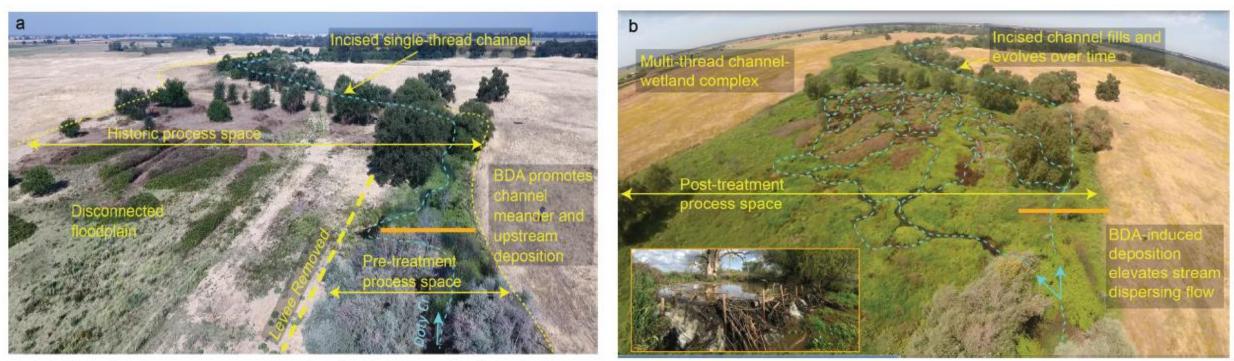
What we Need: Reaches of Riverscape


Riverscape-Sized Sample Frame

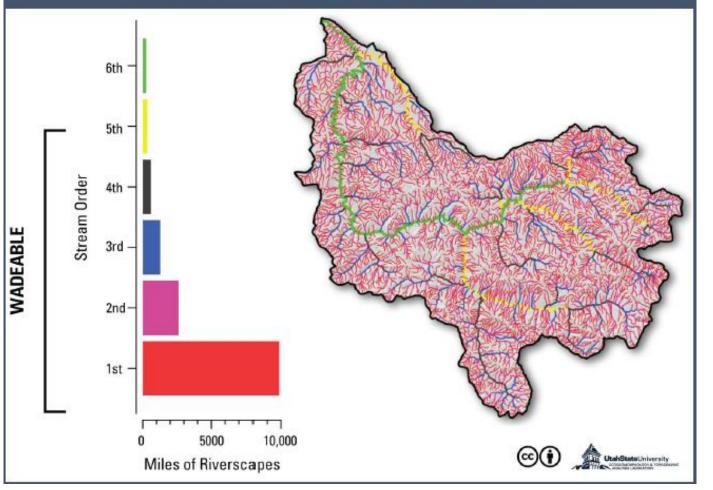
Discrete Geographic Object (DGO) Metrics

Valley bottom extent (acres) Active channel, active floodplain, inactive floodplain (acres) Riparian extent (acres) Primary Channel (mi) Secondary Channel (mi) Confluence (count) Difluence (count) Channel head (count) Natural Dams & jams (count) Artificial Dams & Jams

🖾 Satellite Imagery Curated Views Custom View Integrated Geographic 53 8 Objects (IGOs) Centerline of Valley 53 8 Discrete Geographic 0 23 M Objects (DGOs) A fixed, 20x bankfull sample frame (channel reach) Colton wield DGO sample frames To make riverscape scale appropriate measurements Concepts from: Alber & Piegay (2011) Dol; 10,1016/j.geomorph.2010.09.009 Example VBET: https://data.riverscapes.net/rv/13dc944f-3778-4cd1-8771-edb42a1d37ab


Historic Context is Critical for Riverscape Management

*Many systems were degraded before BLM existed


What Do These Impacts Have in Common?

- Removed process-space (direct & indirect)
- Structural starvation
- Increased hydrologic efficiency
- Altered supply of water, sediment and vegetation

Doty Ravine Creek, California project area (a) in August 2017 before the floodplain was reconnected (b) in August 2019 after the floodplain was reconnected. Restoration design elements are highlighted on images along with gains in process space and stream recovery in response to restoration actions. Photographs: (a) Drone image by Placer Land Trust, (b) drone image by Matt Hamman.

We need scalable solutions

Status Quo "Restoration" isn't Working

- U.S. ecological restoration economy (BenDor et. al, 2015)
 - 126,000 people
 - Worth \$9.5 billion/year
 - Overall economic impact = \$24.8 billion/year
- Median Cost of Stream Restoration = \$265,000/mile
- Median Project Length = 0.5 miles (Bair, 2004, Bernhardt et al., 2007).
- ROI is worrying (Hiers et al., 2016b)

Scalable Alternative: Help Water Do the Work

- Restore freedom space to facilitate stream-floodplain connections & lateral adjustments (Riverscape Health Principle 1)
- Restore the diet of water, sediment, and vegetation (Riverscape Health Principle 4)
- Restore the supply of structural elements (Riverscape Health Principles 2, 3, and 4)
- Defer decision-making to the system

Streams need a healthy diet and exercise

Post assisted BDA, Central Montana

Post assisted log structure, Eastern Oregon

Levee removal, Green River, WA

Example: Lewistown, MT

Situation:

- Prairie stream
- Structurally-starved
 - Issue: Absence of beaver dam building activity:
 - (i) causes degradation
 - (ii) prevents recovery

LTPBR of Riverscapes Introductory Workshop

- 40 Students
- 2 days of lecture
- 1 day in field

Solution: Mimic, Promote, and Sustain Beaver Dam Building Activity

Mimic Promote

August 2019 – Pre-restoration

Promote (September 2019)

September 2019 – Beaver Improving our BDAs

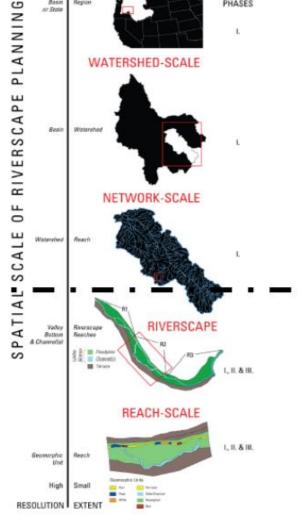
beaver packing BDA with clay

November 2020: Mimic + Promote = Success! New Objective = Sustain

Beaver Constructing New Dams

Beaver Constructing New Dams

Spatial Scale of Planning


Network-scale tools take free data (available nationally) and estimate what you will find in a local riverscape (good for prioritization, inventory, planning)

Reach-scale tools take the user to their "my riverscape" and lets them author their own:

- Assessments ٠
- Designs
- As-Builts
- Monitoring .

Broad-scale management qoals and objectives

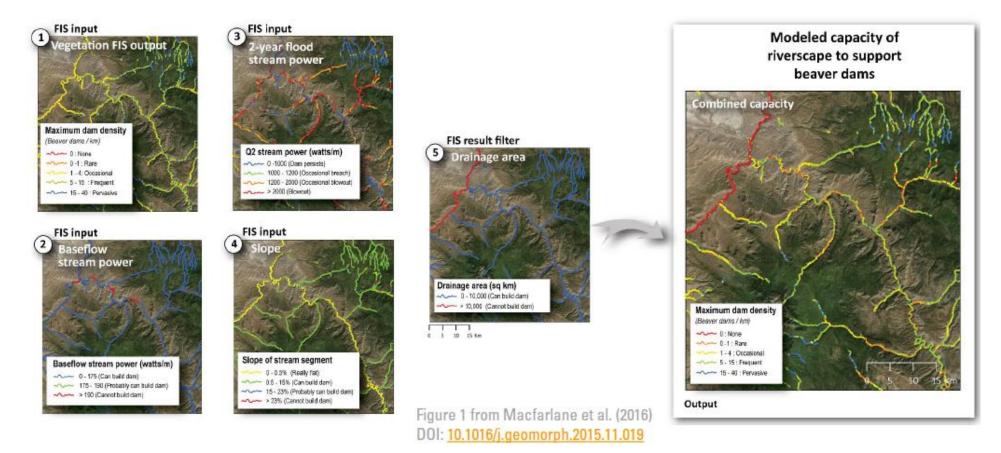
Project scale

REGION-SCALE

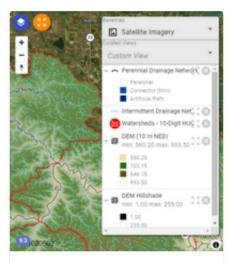
CONSERVATION

PLANNING PROCESS

PHASES

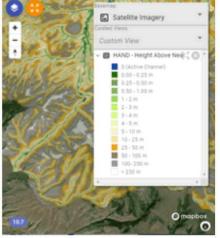

Increasing

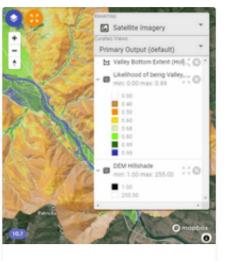
Law


Basin or State

Network-Scale Tools – Broadscale Management Questions

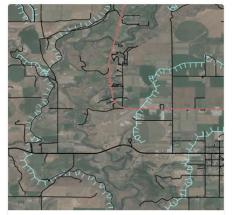
- Remote sensing & nationally-available data
- Geoprocessing & modelled logic
- Getting the most we can from existing data


Production-Grade Tools for BLM's Restoration Landscapes

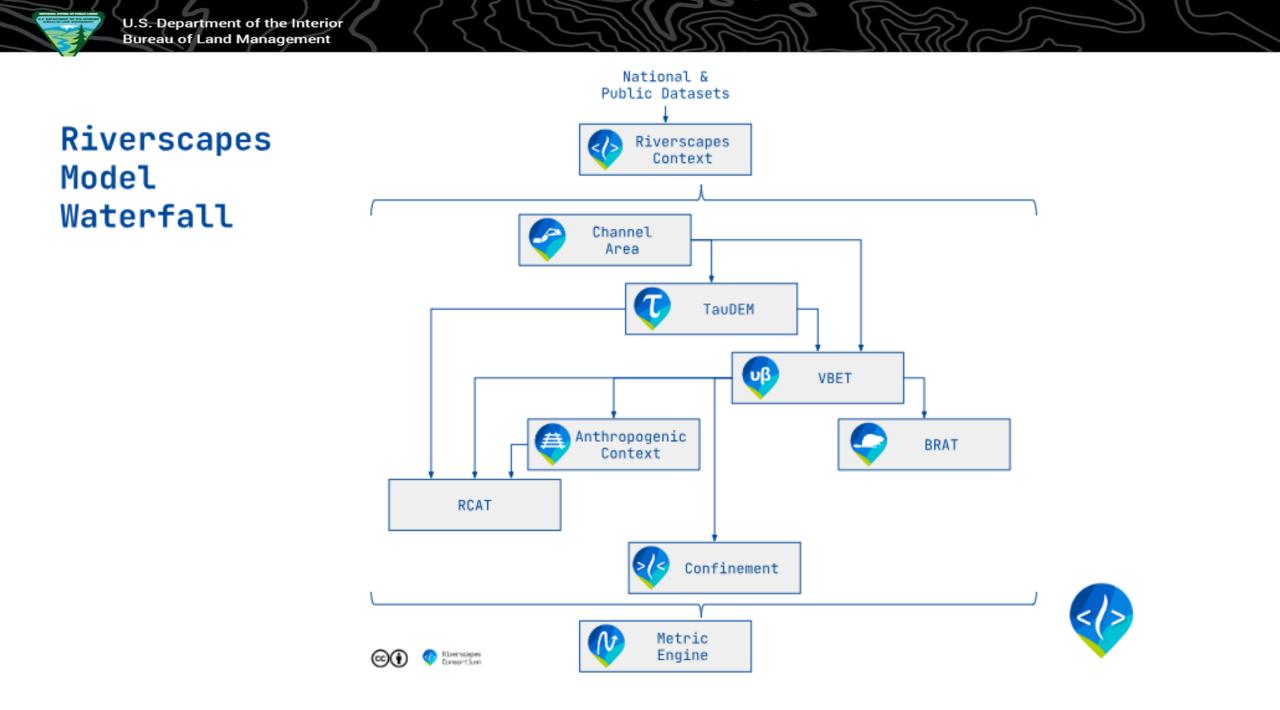


Channel Area

VBET

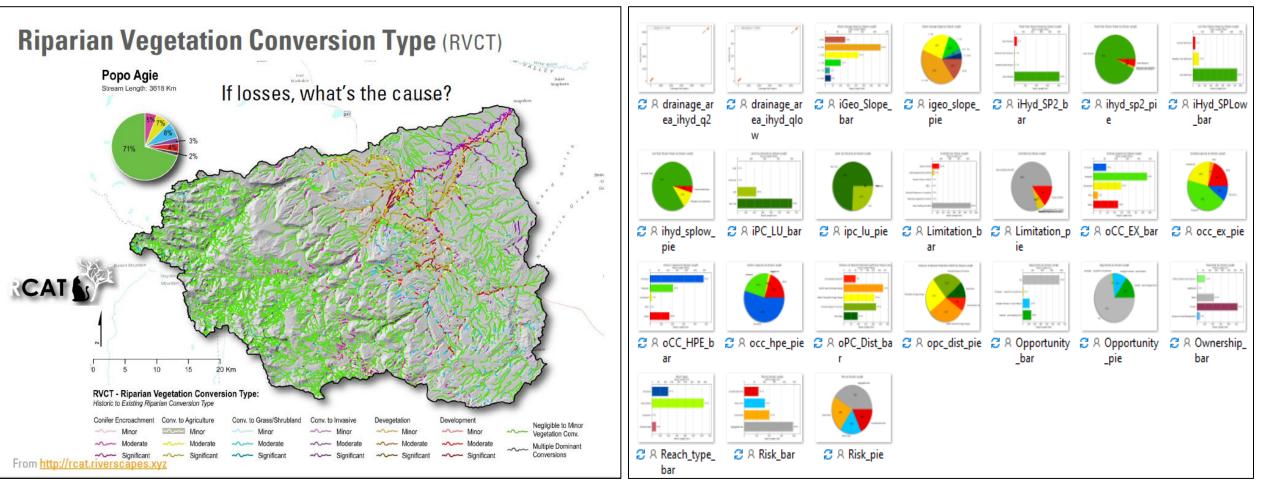


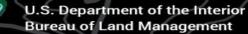
Anthropogenic Context



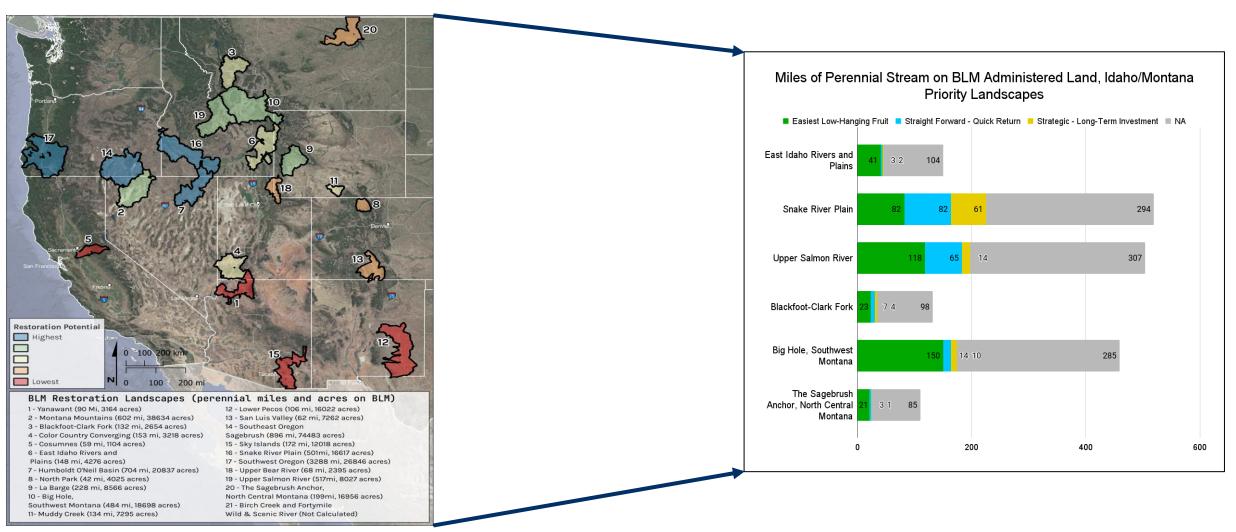
RCAT

TauDEM

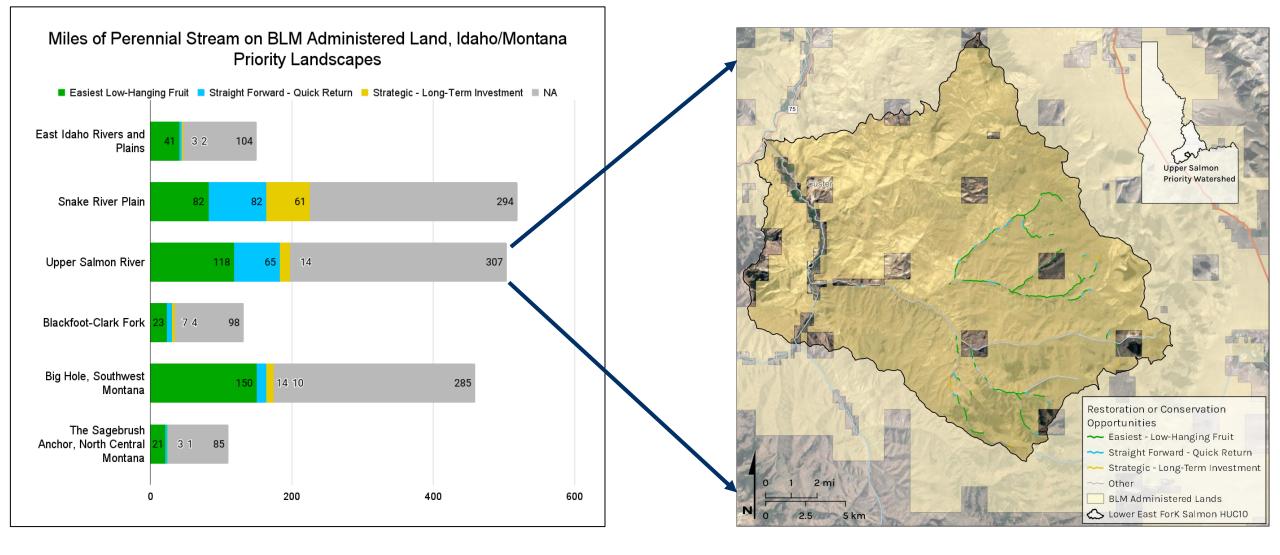

RME



Types of Output to Inform Planning

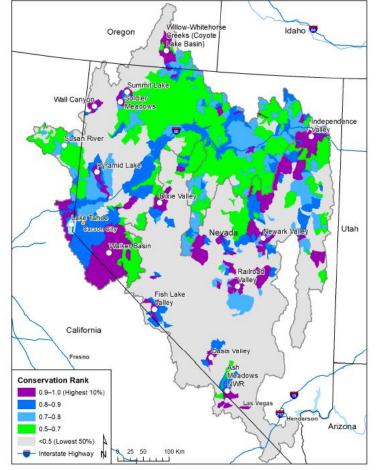

Map Products

Statistics – Riverscape Health & Restoration Opportunities

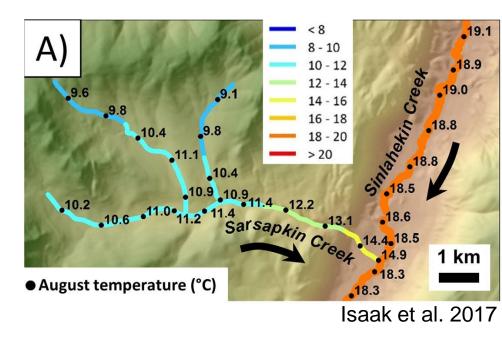

Example Application: Opportunities Among Restoration Landscapes?

*excludes streams where conflict is moderate/high or dam building not possible

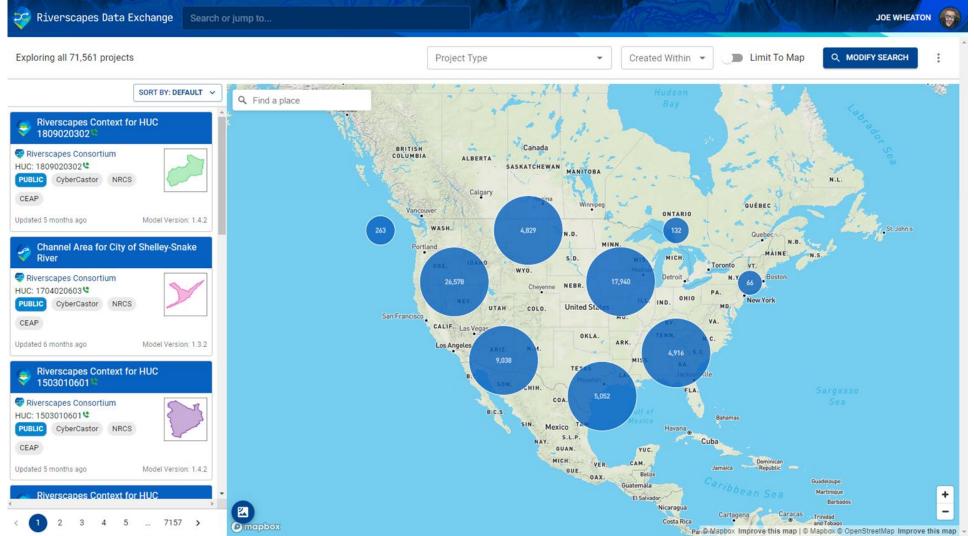
Riverscape Restoration: Where within a Watershed?


Further Filtering by Restoration Objectives: Cold-water Fishes

Riverscape Principles



Native Fish Distribution



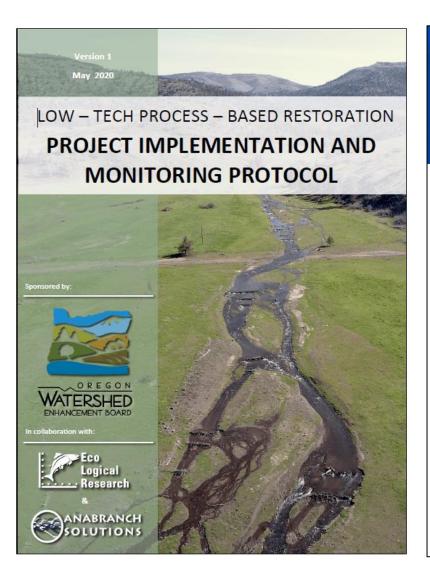
Dauwalter et al 2017

Stream Temperature

Riverscapes Data Exchange

- Find, view, and download data
- Network models stored as "projects" with curated & custom views

Riverscapes


Data Exchange

- Can create groups to share data
- "Collection" tags for AOIs or project types
- Upload complimentary data
- Standardized metadata (e.g. riverscapes compliant) to ensure interoperability with all Riverscape Consortium tools (track geoprocessing and edits and automate metadata updates, enable viewers, etc.).

Project Design & Monitoring: Tools & Framework

Protocol – V2.0 by Summer

QRiS

Riverscapes Studio for QGIS

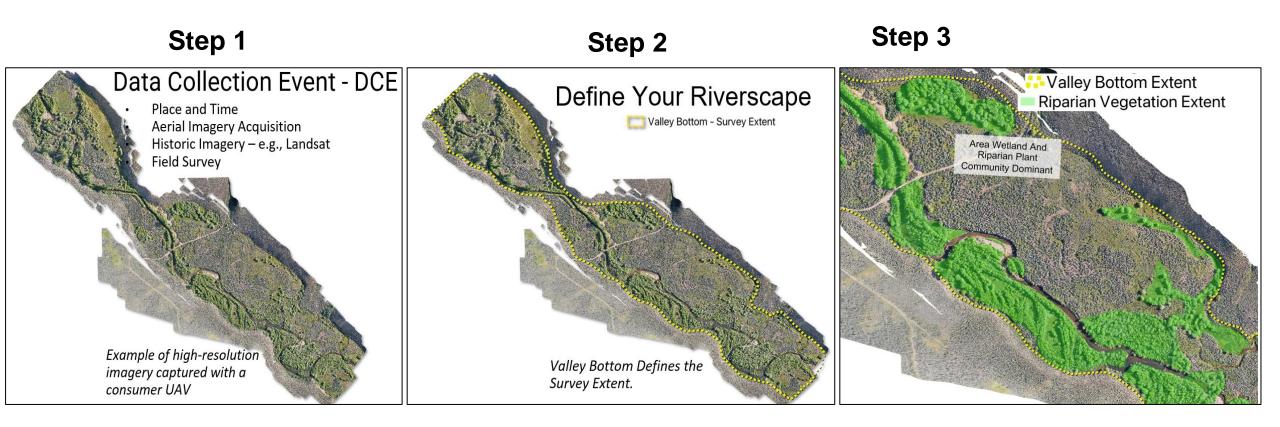
QGIS Riverscapes Studio or QRIS is a plugin that helps you digitize your riverscape data. It provides a flexible, extensible structure for your data, together with consistent symbology to streamline your analysis and reporting.

QRIS is a plugin to the free, open-source QGIS desktop GIS software. QRIS is targeted at anyone interested in understanding and analyzing their riverscape - including: practitioners, managers, analysts, researchers and students with some familiarity with GIS. It helps users with analysis, monitoring, assessment of riverscapes as well as preparation of the design and as-builts of low-tech process-based restoration designs.

Download QRiS Learn how to download and install ORiS for QGIS.

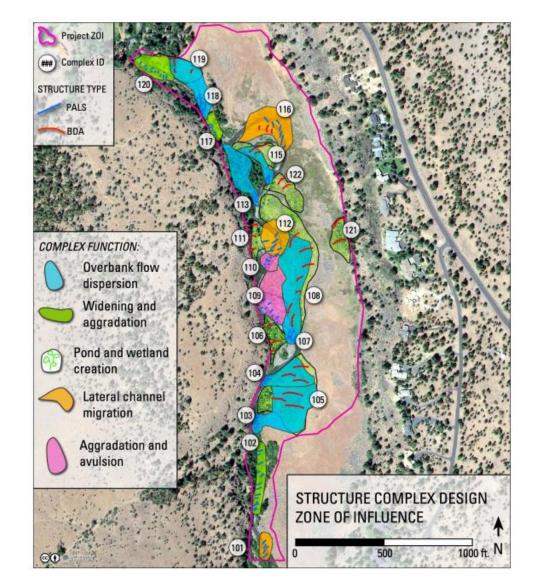
Getting Started Learn how to create a project and start digitizing your riverscape.

Software Help Get help with using QRiS and its features.


		Planning									
	What? When → Indicators ↓		Status & Context Existing Historic Conditions Estimate					What's Possible Recovery Potential			
	Principle 1	- Streams need space.									
	Proportion of Active Valley Bottom	0%	±	0%	0%	±	0%	0%	±	0%	
~	Principle 2 - Structure for	ces co	mple	exity	and bu	ilds	resi	lience	e		
ators	Jam Desnity (LWD jams / km)	0	±	0	0	±	0	0	±	0	
Idica	Jam Capacity (LWD jams / km)	0	±	0	0	±	0	0	±	0	
Complexity Indicators Structure Indicators	Beaver Dam Density (beaver dams / km) Beaver Dam Capacity (beaver dams /	0	±	0	0	±	0	0	±	0	
s St	km)	0	±	0	0	±	0	0	±	0	
ator	Number of Active Channels	0	±	0	0	±	0	0	±	0	
ndic	Number of Active Channels	0	±	0	0	±	0	0	±	0	
city I	Diffluence Density (# / km)	0	±	0	0	±	0	0	±	0	
plex	Confluence Density (# / km)	0	±	0	0	±	0	0	±	0	
Com	Floodplain Channel Head Density (# / km)	0	±	0	0	±	0	0	±	0	
	Pool Desnity (# / km)	0	±	0	0	±	0	0	±	0	
	Mid Channel Bar Density (# / km)	0	±	0	0	±	0	0	±	0	
6 (6	Riffle Density (# / km)	0	±	0	0	±	0	0	±	0	
Resilience Indicators	VB Mesic Resources (% of years mesic)	0%	±	0%	0%	±	0%	0%	±	0%	
Re Inc	VB Mesic Resource Resilience (0 to 1)	0.00	±	0.00	0.00	±	0.00	0.00	±	0.00	
	Complexity Resilience (0 to 1)	0	±	0	0	±	0	0	±	0	


Riverscape Health Metrics: Similar Process

	Principle 4 - Inefficien	t conv	eyan	ce of	fwater	is he	ealthy	/		
	% Inundated @ Baseflow	0%	±	0%	0%	±	0%	0%	±	0%
_	% Inundated @ Typical Flood	0%	±	0%	0%	±	0%	0%	±	0%
ated low)	Free-Flowing	0%	±	0%	0%	±	0%	0%	±	0%
Inundated Baseflow)	Backwater / Ponded	0%	±	0%	0%	±	0%	0%	±	0%
@ L B	Overflow	0%	±	0%	0%	±	0%	0%	±	0%
Inundation Type (% of Inundated Area @ Baseflow)	Check ∑ to 100%	0%		NA	0%		NA	0%		NA
	Geomorphic Condition									
er & ges	Stage 0 - Anastamsoing	0%	±	0%	75%	±	25%		±	0%
Percent RS Length in Cluer & Throne Stages	Stage 1 - Single Thread	10%	±	5%	0%	±	0%		±	0%
one	Stage 2 to 3 - Incised	90%	±	5%	0%	±	0%		±	0%
Thr	Stage 4 - Degradation & Widening	0%	±	0%	0%	±	0%		±	0%
S Le	Stage 5 - Aggradation & Widening	0%	±	0%	0%	±	0%		±	0%
it R	Stage 6 - Quasi-Eqilibirum	0%	±	0%	0%	±	0%		±	0%
rcer	Stage 7 - Laterally Active	0%	±	0%	5%	±	5%		±	0%
Ре	Stage 8 - Anastamosing	0%	±	0%	20%	±	15%		±	0%
	Check ∑ to 100%	100%		NA	100%		NA	0%		NA
	Management &	Projec	t Spe	cific	Indicat	ors				
	Day of Year Flows Dry Up	200	±	5	200	±	5		±	
	Fish Density (fish / 100 m)	5	±	5	75	±	25		±	



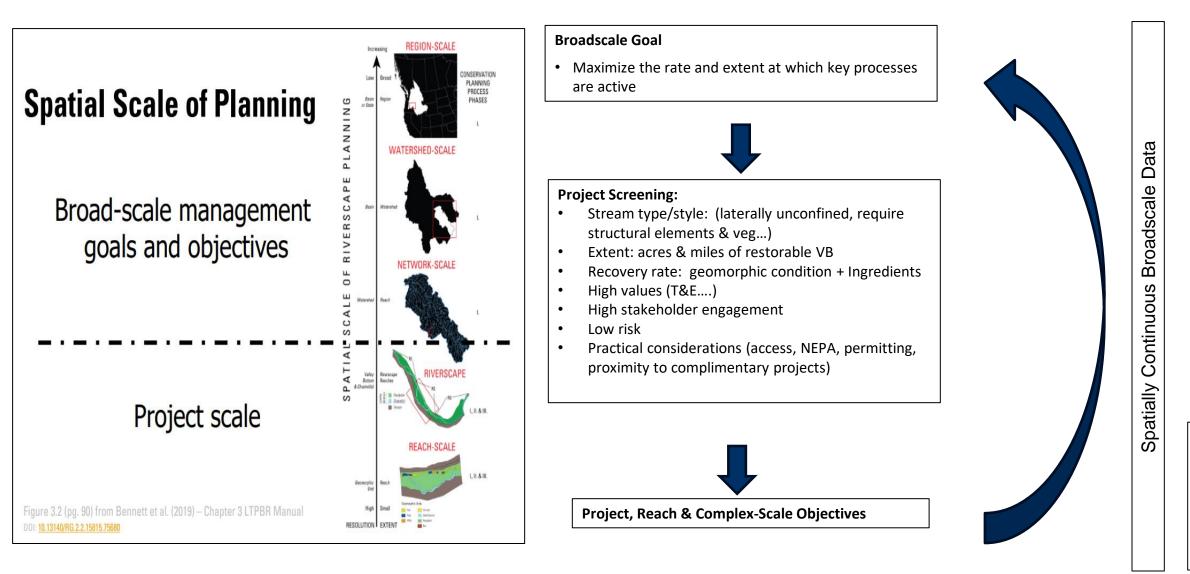
Riverscape Health and Project Effectiveness Monitoring

Project Designs & Tracking

SMART INDICATOR TABLES

			TI	ME HO	RIZON	
INDICATOR	GOAL	HISTORIC	EXISTING (Current)	AS-BUILT (0 Years)	MEDIUM (3 – 5 Years)	LONG (5–10 Years)
VALLEY BOTTOM ACTIVE (% of Valley Bottom Area)	GOAL 1: ACTIVE FLOODPLAIN	90% ± 10	20%	25 ± 5%	40 ± 10 %	90% ± 10
CEM STAGE (% of Valley Bottom Length)	GOAL 1: CEM STAGE COMPOSITION	S0: 80% ± 20 S8: 15% ± 10 S7: 5% ± 5 S5: 0% S2: 0%	S0: 0% S8: 25% S7:35% S5: 10% S2: 20%	S0: 0% S8: 25% S7: 35% S5: 10% S2: 20%	S0: 0% S8: 75% ± 10 S7: 15% ± 10 S5:<5% S2: <5%	S0: 80% ± 20 S8: 15% ± 10 S7: 5% ± 5 S5: 0% S2: 0%
LWD ACCUMULATIONS (Jams / mile)	GOAL 2: LTPBR PRINCIPLES	300 ± 50 (Natural)	2 / mi.	100 (PALS)	200 ± 25 (PALS + Natural)	250 ± 50 (Natural > PALS)
BEAVER DAM DENSITY (Dams / mile)	GOAL 2: LTPBR PRINCIPLE	75 ± 20 (Natural)	0 / mi.	50 (BDAs)	60 ± 10 (BDAs + Natural)	75 ± 20 (Natural > BDAs)
WETTED CHANNEL LENGTH (miles)	GOAL 3: FISH HABITAT QUANTITY AND QUALITY	4.0 ± 0.5	1.8	2 ± 0.2	3 ± 0.5	3.5 ± 0.5
SPAWNING HABITAT QUANTITY (Riffles / mi.)	GOAL 3: FISH HABITAT QUANTITY AND QUALITY	30 ± 10	10	10	20 ± 5	25 ± 10

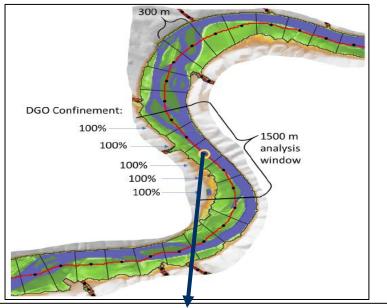
To answer key questions:


What are we doing, where, why, and when? How much of a response do we expect, where, and when?

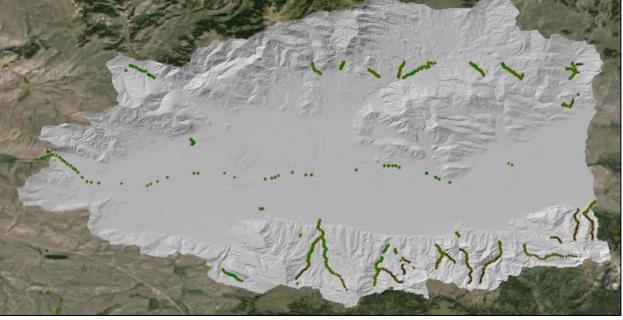
Part 1: Overview of riverscape concepts, data and tools for BLM

Part 2: Application of concepts, data, and tools at the various spatial scales of planning

Planning: What Actions to Implement & Where?

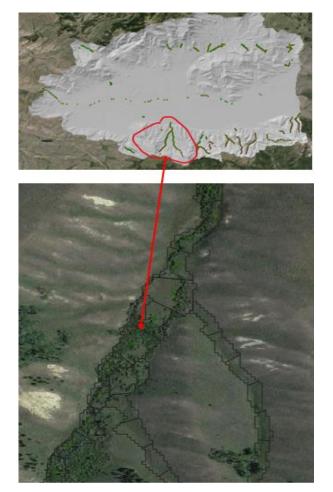


Project-Scale Data


Where are those riverscapes? Attribute filters

Network-scale Data

Discrete Geographic Object (DGO) Metrics


- Acres of valley bottom
- % riparian
- Riparian departure and type
- VB confinement
- Hydroperiod (perennial, intermittent, ephemeral)
- Risk (e.g., development in VB)
- Beaver dam building capacity

Riverscape Attribute Filter

Figure: Lima Reservoir Watershed, MT: Perennial streams, on BLM lands, with low/absent risk, moderate riparian vegetation departure, moderate/high historic beaver dam building capacity, and existing capacity > 2 dams/km

Evaluate Filter Results

- ~7 miles of contiguous riverscape
- 30% to 90% of VB Riparian
- ~100% free flow
- Stages 1-3 CEM (promote incision recovery)
- Materials conifer encroachment
- Access dirt road to ~60% of project

- Single beaver dam, likely inactive
- Existing dam capacity 5-15/km
- Historic dam capacity 15 to 40
- ~ 4 miles of perennial tributary misclassified as ephemeral (validate)
- Cattle/wildlife trailing absent likely compatible with restoration objectives

- Diversion to flood irrigation: impediment to natural dispersal
- 2 Stream crossings no culvert?

Summarize the "Best" Opportunities – Desktop Review

Restoration Opportunity Summary Pumpkin Creek, MT

Table of Contents:

- Project footprint
- River style: Hydrology, confinement, veg, bed/bank material
- Geomorphic conditions: (Historic vs. Existing vs. Potential vs. DFC)
- Ingredients & Diet:
 - o proximity to existing beaver colonies (or a pathway to translocation)
 - amounts and types of riparian vegetation to support ecological processes
 - o sufficient base flow to provide the depth of water beaver
 - o Availability of sediment (via upstream sources and/or induced erosion)
- Risk
- Recovery rate & potential
- Control over contributing factors
- Resource values (e.g., T&E, candidate or SSS habitat, water quality issues/values, etc.)
- Community "buy-in."

High-level review:

- Describe the project, relative to the screening criteria:
- Identify unknowns that warrant more review

The "best": size of this subset is influenced by:

- Budgets vs scope of opportunities'
- Clear "breaks" between top and lower-tier opportunities

Consideration:

- Err on side of "reasonable" commission error. For example, if you have funding for 10 miles of restoration and 20 are clearly superior opportunities, focus on those 20 miles.
- Avoid analysis paralysis, but answer key questions

Deeper-Dive

Field Tours

- validate observations from imagery & GIS data
- investigate questions that couldn't be answered with coarse data

Records & Issue-Specific Data

- historic photos
- land health assessments
- fish/wildlife inventories and habitat designations

Human-Dimension & Practical Considerations

- engage stakeholders
- explore partnership opportunities

What's been Lost

Pumpkin Creek, Valley Bottom

Compare & Select Project(s) for Planning & Design

Restoration Opportunity Summary Pumpkin Creek, MT

Table of Contents:

- Project footprint
- · River style: Hydrology, confinement, veg, bed/bank material
- · Geomorphic conditions: (Historic vs. Existing vs. Potential vs. DFC)
- Ingredients & Diet:
 - o proximity to existing beaver colonies (or a pathway to translocation)
 - o amounts and types of riparian vegetation to support ecological processes
 - o sufficient base flow to provide the depth of water beaver
 - Availability of sediment (via upstream sources and/or induced erosion)
- Risk
- Recovery rate & potential
- Control over contributing factors
- Resource values (e.g., T&E, candidate or SSS habitat, water quality issues/values, etc.)
- · Community "buy-in."

Restoration Opportunity Summary Rose Creek, MT

Table of Contents:

- Project footprint
- · River style: Hydrology, confinement, veg, bed/bank material
- Geomorphic conditions: (Historic vs. Existing vs. Potential vs. DFC)
- Ingredients & Diet:
 - proximity to existing beaver colonies (or a pathway to translocation)
 - o amounts and types of riparian vegetation to support ecological processes
 - sufficient base flow to provide the depth of water beaver
 - o Availability of sediment (via upstream sources and/or induced erosion)
- Risk
- Recovery rate & potential
- Control over contributing factors
- Resource values (e.g., T&E, candidate or SSS habitat, water quality issues/values, etc.)
- Community "buy-in."

Restoration Opportunity Summary Lower Dog Creek, MT

Table of Contents:

- Project footprint
- River style: Hydrology, confinement, veg, bed/bank material
- Geomorphic conditions: (Historic vs. Existing vs. Potential vs. DFC)
- Ingredients & Diet:
 - o proximity to existing beaver colonies (or a pathway to translocation)
 - o amounts and types of riparian vegetation to support ecological processes
 - o sufficient base flow to provide the depth of water beaver
 - Availability of sediment (via upstream sources and/or induced erosion)
- Risk
- Recovery rate & potential
- Control over contributing factors
- Resource values (e.g., T&E, candidate or SSS habitat, water quality issues/values, etc.)
- Community "buy-in."

Art & Science: priorities are the intersection of values, physical/ecological opportunities and practical considerations

Project Planning & Design – Riverscape Studio

Complex-Scale Map(s)

(One for each complex)

LOW-TECH PROCESS-BASED RESTORATION RECOMMENDED DESIGN PACKAGE

Shows complex locations on drainage network.

Shows structure locations within each complex, complexes zone of influence, structure types, & valley bottom extents.

From page 20 of Pocket Guide; Wheaton et al. (2019) DOI: 10.13140/RG.2.2.28222.13123/1

(and the s	Terrarian Terrar	Condition	riangere Team	transfer bogs	market rouge	the loss of the lo	mangles
528	(any (china) (china)	inter t	10.00 10.000	19	-2.4	Universit Sunting Hist Super History History	The field encoded and channel advector/PLED or form test- ments and report ordered or well as internet appropriate PLED as the channel and cognitive pro-
172.			teres are	-	*1	true Kole Economy Con	The other BDA is manifed with fulfill to taxable other fulfill to taxable other interaction of the other is related on all provide one to begin access
103.	24	Status popularian (interl)	Arrado Milita Incontaty	10		there are a second to the seco	international according to the second
122	100	Approduction and descript (dept-1)	Arrian print (Clever)	**			Cardinates providen type sector contract to the contract of the test of contract to the test of the test to the antiperior description and the test of the test of the test of the test of the test of the test of the test of the test of the test of the test of the test of the test of the test of the test of the test of the test of test of the test of the test of the test of test of tes

Note, structure design tables are possible but not always necessary as during construction not all structures are built exactly as designed, and flexibility is key (e.g. 12-15 structures specified).

Schematics of planforms, crosssections, & profiles are helpful to convey what typical structures will look like, but need not be followed rigidly.

Questions

Links

<u>Riverscape Data Exchange</u>: This is where you will access, view, share, and download riverscape data. Create an account, then send me an email. I'll add you to the BLM Riverscapes group.

<u>Riverscape Studio for QGIS</u> - QGIS Riverscapes Studio or QRiS is a plugin that helps you digitize your riverscape data. It provides a flexible, extensible structure for your data, together with consistent symbology to streamline your analysis and reporting.

QRiS is a plugin to the free, open-source QGIS desktop GIS software. QRiS is targeted at anyone interested in understanding and analyzing their riverscape - including: practitioners, managers, analysts, researchers and students with some familiarity with GIS. It helps users with analysis, monitoring, assessment of riverscapes as well as preparation of the design and asbuilts of low-tech process-based restoration designs.

<u>Riverscapes Consortium Knowledge Base:</u> Access the tools, links to tool documentation, FAQs, recently recorded BLM trainings, and more. Users can also submit a "Help Desk Ticket" for assistance from our partners at the Riverscapes Consortium or simply to notify them of an issue that the team may want to fix.

<u>Riverscape Consortium and Vision for Data & Tool Standards</u>: Watch the 3 videos to acquaint yourself with the team and its vision for the data, tools, and databases we're producing to help practitioners create the information they need to conserve/restore riverscapes more efficiently and effectively.

<u>Tool Standards</u>: Like climate scientists did 20+ years ago, the RC has developed standards for the tools (largely based on NASA readiness levels), data, and database. This enables us to produce a cohesive suite of data management and analysis products that meet FAIR standards. They also help staff "squeeze the juice" from the data, auto-populate metadata during geoprocessing, and enable use via the various toolbars we've developed to help practitioners interact with these data. You'll likely want to view the series of short videos in which the PI on our partnership describes these concepts and standards. This year, I'd like to add the requisite metadata to several BLM funded layers (e.g. <u>NWI++, LLWW attributes</u>, etc.), so we can include them within the RC tools & database.

<u>Production-grade riverscape tools overview</u>: These are riverscapes-compliant tools, which have been refactored to be capable of running in the cloud over regional, state-wide and/or nationwide extents, while still resolving predictions of what is happening in individual reaches (i.e. 100 m to 500 m length scales) of riverscape. You'll want to be familiar with the model inputs, intermediaries, outputs, and common uses. You can review the full array of riverscape tools <u>here</u>.

<u>Catalog of Process-based restoration resources</u>: Here, you can access manuals, self-paced training modules, protocols, and more. Since we complete our project designs in QGIS via the QRiS tool, you may want to watch the <u>Design Modules</u>. They are a few years old and don't cover the tools. However, they do cover the concepts, which is important, so that you can understand the objectives of technical staff who may come to you for assistance.